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Linking Datasets on Organizations Using Half A Billion
Open Collaborated Records
CONNOR JERZAK & BRIAN LIBGOBER Harvard & UCSD

S cholars of organizations often face challenges connecting datasets. Disparate
sources rarely share identifiers or covariates. Therefore, researchers usually re-
sort to exact or fuzzy string matching between different lists of organization

names. Nevertheless, these techniques may struggle to find correct pairs. Widely
used names for the same entity often have few characters in common (e.g., ‘Chase
Bank’ and ‘JPM’). In this letter, we offer an alternative. We build an organizational
alias directory from over half-a-billion human-contributed records on LinkedIn. We
do so by transforming these records into an alias network and applying an unsuper-
vised Markov clustering algorithm for extracting high probability matches between
organization names. The resulting directory contains publicly traded firms, NGOs,
small businesses, and government agencies from across the world. We highlight the
directory’s value through an application on lobbying by publicly traded firms. We
make our software available in an open-source R package (‘LinkIt’).

Word Count: 3,301

RECORD-LINKAGE AND ORGANIZATIONAL SOCIAL SCIENCE

As large datasets on individual political behavior have become more prevalent, scholars have

focused increasing attention on the methodological problem of linking records from different

sources (Enamorado, Fifield, and Imai 2019; Herzog, Scheuren, and Winkler 2010; Larsen and

Rubin 2001). This task is important because, through it, researchers can obtain outcome or

covariate data about survey respondents, campaign contributors, or voters that would have

been costly or impossible to obtain in previous eras (e.g. Ansolabehere and Hersh 2012; Figlio

et al. 2014; Bolsen, Ferraro, and Miranda 2014; Hill and Huber 2017). When unique identifiers

are unavailable for linking datasets, this recent research has developed sophisticated record

A
P

SR
Su

bm
is

si
on

Te
m

pl
at

e
A

P
SR

Su
bm

is
si

on
Te

m
pl

at
e

A
P

SR
Su

bm
is

si
on

Te
m

pl
at

e
A

P
SR

Su
bm

is
si

on
Te

m
pl

at
e

A
P

SR
Su

bm
is

si
on

Te
m

pl
at

e
A

P
SR

Su
bm

is
si

on
Te

m
pl

at
e

A
P

SR
Su

bm
is

si
on

Te
m

pl
at

e
A

P
SR

Su
bm

is
si

on
Te

m
pl

at
e

A
P

SR
Su

bm
is

si
on

Te
m

pl
at

e
A

P
SR

Su
bm

is
si

on
Te

m
pl

at
e

1



linkage algorithms which can find, with high probability, the same individuals in two datasets

using stable characteristics such as birth year and race.

These developments have had less of an impact on scholarship concerning organizational

entities such as corporations, universities, trade associations, think tanks, religious groups,

non-profits, and international organizations. As with research on individuals, scholars of or-

ganizations also combine multiple data streams to develop evidence-based models. However,

in addition to lacking shared unique numeric identifiers, such datasets also often lack common

covariate data that form the basis for probabilistic linkage algorithms. Therefore, scholars rely

heavily on exact or fuzzy string matching to link records.

To take a recent example from APSR, Crosson, Furnas, and Lorenz (2020) compare the

ideology scores of organizations that have political action committees with ones that do not.

The ideology scores are calculated from a dataset of interest group position taking made by a

non-profit organization (Maplight), while the list of organizations with political action commit-

tees ultiamtely derives from Federal Election Commission records. Maplight and the Federal

Election Commission may not refer to organizations in the same way and there is no covariate

data that one can use to help with linkage. Matching records in this situation is “challenging”

(p. 32), and the authors consider both exact and fuzzy matching. Ultimately, they adopt a

combination of pre-processing and exact matching because of concerns about false positives,

while acknowledging that they inevitably do not link all related records as a result. Indeed, the

authors supplement the 545 algorithmic matches with 243 hand-matches, implying that their

first algorithmic effort missed at least one in three correct matches.

The challenge that Crosson, Furnas, and Lorenz (2020) face is typical for scholars studying

organization. Informally, our impression is that they have surmounted it more effectively, and

perhaps with greater transparency, than typical. The example illustrates how, although pow-

erful, string matching has fundamental limitations. While it can link records whose identifiers

contain minor differences, it has trouble handling the diversity of monikers an organization

may have. For example, “JPM” and “Chase Bank” refer to the same organization, yet these

strings share no characters. Indeed, even human coders may struggle to connect records be-
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tween some organizations. For example, string matching and research assistants both may fail

to detect a relationship between Boalt Hall and Berkeley Law School, although the former was

a common name for the latter until 2020. Such difficulties connecting data sources routinely

hinder research on organizations, especially when attempting to link datasets in different source

languages.

In this letter, we develop a tool that can help. First, we use the full LinkedIn database

to construct a weighted graph indicating the probability that two organizational names share

the same reference point. For example, “JPM” is one node in this graph, while “JP Mor-

gan” is another. By counting the frequency with which each name is associated with shared

organizational URLs (i.e. https://www.linkedin.com/company/jpmorgan), we generate the

probability of connection between nodes. With these probabilities in hand, we then apply a

community detection algorithm to this directed graph. This algorithm allows us to create a

large-scale directory which can help researchers in linking datasets on both public and private

organizations from over 100 countries and in dozens of languages. Intuitively, the directory

uses the combined wisdom of millions of human beings with first-hand knowledge of these orga-

nizations. Often, it can succeed in connecting aliases where string and manual record-linkage

approaches would struggle.

We illustrate the usefulness of this directory through an application involving lobbying data.

An open-source package (“LinkIt”) implementing computationally efficient matching using the

directory has been posted online at url-hidden.

DATA SOURCE DESCRIPTION

User-contributed records from LinkedIn are our primary data source. We acquired these records

from a vendor, Datahut.co, which stated that they were a complete site scrape circa 2017. The

Ninth Circuit Court of Appeals established in HIQ Labs, Inc., v. LinkedIn Corporations (2017)

the right of firms to obtain and market such data. The dataset contains about 350 million

mostly unique profiles drawn from over 200 countries—a size and coverage consistent with

LinkedIn’s own estimates.
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TABLE 1. Illustration of source data.
Full Name Title Organization Profile Url Start Date End Date

Carole Baskin CEO Big Cat Rescue http://www.linkedin.com/company/big-cat-rescue 1992-11-01 2017-04-16

Carole Baskin Founder Big Cat Rescue http://www.linkedin.com/company/big-cat-rescue 1992-11-01 2017-04-16

Carole Baskin Owner Guardian Angel Land Trust 1981-01-01 2017-04-16

Doc Antle Director R.S.F. http://www.linkedin.com/company/r-s-f/ 1982-01-01 2017-03-14

Doc Antle DIRECTOR T.I.G.E.R.S. 1982-01-01 2017-03-14

Mario Tabraue Co-Founder and President Zoological Wildlife Foundation http://www.linkedin.com/company/zoological-wildlife-foundation 2016-08-28

To construct the directory, we focus on the professional experiences posted by users. In each

profile on LinkedIn, a user may list the name of their employer as free-response text. Users also

may link this experience to the profile of their employer. They may also decline to do so or may

make mistakes. Large, internally differentiated organizations often have multiple valid profile

URLs. For example, ICPSR and the University of Michigan both have distinct organizational

profile URLs on LinkedIn. Table 1 provides an example extract of the professional experience

table for several public figures.

GRAPH CONSTRUCTION

User profiles on LinkedIn contain hundreds of millions of associations between organization

names and URLs. We apply a fundamental law of probability and an independence assumption

to average across the noise present in the name-to-URL data. We thereby obtain the most likely

name-to-organization mappings.

To formalize our approach, we denote organization names by 𝑎1, 𝑎2, . . . 𝑎𝑁 and consider

Pr
(
𝑎𝑖 | 𝑎 𝑗

)
. This expression represents the probability that, given name 𝑎 𝑗 , the organization

with name 𝑎𝑖 is intended. We can re-write this probability as

Pr(𝑎𝑖 | 𝑎 𝑗 ) =
∑
𝑢∈U

Pr
(
𝑎𝑖 | 𝑢, 𝑎 𝑗

)
Pr(𝑢 | 𝑎 𝑗 ), (1)

where U is the set of all URLs and 𝑢 is a specific URL from this set. It is straightforward to

calculate Pr(𝑢 | 𝑎 𝑗 ) as the proportion of times that URL 𝑢 is selected by users entering organiza-

4

A
P

SR
Subm

ission
Tem

plate
A

P
SR

Subm
ission

Tem
plate

A
P

SR
Subm

ission
Tem

plate
A

P
SR

Subm
ission

Tem
plate

A
P

SR
Subm

ission
Tem

plate
A

P
SR

Subm
ission

Tem
plate

A
P

SR
Subm

ission
Tem

plate
A

P
SR

Subm
ission

Tem
plate

A
P

SR
Subm

ission
Tem

plate
A

P
SR

Subm
ission

Tem
plate



tion name 𝑎 𝑗 . Pr
(
𝑎𝑖 | 𝑢, 𝑎 𝑗

)
is tougher, but tractable if we make an independence assumption.

We suppose that given a URL, the alias 𝑎 𝑗 adds no information about the probability that

alias 𝑎𝑖 is intended. This assumption is comparable to that behind the naive Bayes classifier,

a common algorithm which often gives good predictive performance. Under this assumption,

Equation 1 can be simplified:

Pr(𝑎𝑖 | 𝑎 𝑗 ) =
∑
𝑢∈U 𝑗

Pr (𝑎𝑖 | 𝑢) Pr(𝑢 | 𝑎 𝑗 ), (2)

where the quantity, Pr (𝑎𝑖 | 𝑢), can be calculated as the proportion of cases where a user selecting

organization URL 𝑢 has written organization name 𝑎𝑖.

Using this approach, we now can calculate a probability matrix, P, where entry 𝑖, 𝑗 is

Pr
(
𝑎𝑖 | 𝑎 𝑗

)
. This matrix induces a directed graph on organization names as nodes. The matrix

𝑃 is sparse since most organization names are never intended to refer to the each other.

To illustrate the calculation of Pr (𝑎𝑖 | 𝑢), suppose we wished to know the (hopefully low)

probability that “Michigan State University” is an alias for “University of Michigan.” The

term “University of Michigan” occurs in 63,196 employment experiences in our source data.

It is associated with some 47 organization URLs. The URL, https://www.linkedin.com/

company/university-of-michigan, abbreviated here as URL-UM, covers more than 99.5% of

these experiences (to keep the illustration simple, we ignore the impact of these other 0.05% of

URLs). URL-UM appears 75,462 times in the raw data. There is one instance where someone

wrote their employer was “Michigan State University” and (presumably incorrectly) selected

this URL. Thus, the probability of “Michigan State University” given “University of Michigan”

is about 1 in 75,000. By contrast, the organization name “ICPSR” appears with the URL-UM

eight times, so the probability of “ICSPR” given “University of Michigan” is far greater than

the probability of “Michigan State.” This example shows how our proposed approach combines

information from many people in order to reduce the impact of out-of-concensus users.
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COMMUNITY DETECTION

We now seek “communities” or clusters of densely connected names in the graph induced by

the probability matrix, P. These clusters of connected names are what our LinkIt software uses

to merge datasets on organizations when those sources use disparate names for the same entity.

We consider computationally efficient algorithms given the size and sparsity of this probability

matrix. Moreover, since using network models for organizational linkage is novel, we also

focus on algorithms that are simple and transparent. The Markov clustering algorithm—first

proposed by Van Dongen (Van Dongen 2008) and popular in the bio-informatics context—

satisfies our criteria. It is worth noting that there is a vast literature on community detection

in networks that offers alternative methods which can be explored in future research (Rohe,

Chatterjee, and Yu 2011).

The intuition for Markov clustering arises from an observation about finite state Markov

processes, which are used in modeling event sequences where the system evolution at one time

depends only on its state at the previous point. Suppose a traveler exploring a network starts

out at node 𝑖. If the 𝑖, 𝑗-th entry of matrix P gives the probability of going to node 𝑗 from node

𝑖, then P𝑛 = P × P × . . . × P defines the probability of being at node 𝑗 after 𝑛 transitions. If

𝑛 is small, the probability the traveler has remained in 𝑖’s community is high. As 𝑛 increases,

however, the probabiliy of exiting 𝑖’s community grows. Once one moves from one densely

connected cluster to another, the probability of returning to the first cluster quickly drops. In

the limit as 𝑛 → ∞, the “clustered” aspect of short-term transition probabilities is lost. Markov

clustering tries to prevent the loss of information about neighborhoods through a remarkably

simple calculation. After starting off with an initial P matrix and visiting a few nodes (done

by taking P × P × · · · × P), we simply raise all the terms to some power, renormalize every row

to form P̃, and then iterate again (by taking P̃ × P̃ × · · · × P̃). This process rapidly converges

upon stable clusters (Van Dongen 2008), where the number of clusters is determined from the

data and not by researchers.

Figure 1 illustrates the process on a subset of our data. Darker shades reflect heavier weights

in P. Some links are much stronger than others. In the initial weighting, two cliques reflect
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FIGURE 1. Illustration of Markov clustering.

a set of names associated with “jp morgan chase.” Another reflects names associated with

“bank of america.” However, these initial links are dense, making it difficult to distinguish one

cluster of aliases from another. As the algorithm iterates, some links weaken and disappear

while others strengthen. Eventually, each node links to exactly one other node. Notably,

the final cliques contain lexographically dissimilar nodes that do indeed belong in the same

cluster. For example, the “chase” clique contains “wamu”, “paymenttech”, and “摩根大通”

which are all chase affiliates. The “bank of america” clique includes “countrywide financial” and

“mbna,” both under the Bank of America umbrella. By examining the consequential behavior

of LinkedIn users, this method allows us to find in a data-driven way the most likely matches

between the organizational aliases found in political science datasets.

VALIDATION AND APPLICATION

We illustrate the use of the organizational directory on a record linkage task involving lobby-

ing and the stock market. Libgober (2020) shows that firms that meet with regulators tend
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to receive positive returns in the stock market after the regulator announces the policies on

which they lobbied. These returns are significantly higher than the positive returns experi-

enced by market competitors and firms that send regulators written correspondence. Matching

of meeting logs to stock market tickers is burdensome because there are almost 700 distinct

organization names described in the logs and around 7000 public companies. Manual matching

typically involves research on these 700 entities using tools such as Google Finance. While the

burden of researching seven hundred organizations in this fashion is not enormous, Libgober

(2020) only considers meetings with one regulator. If one were to increase the scope to cover

more agencies, or lobbying in Congress, the burden could become insurmountable.

We show how the incorporation of our directory into the matching process can improve per-

formance, treating the human coded matches in Libgober (2020) as ground truth. Formally,

fuzzy matching is a procedure that calculates string dissimilarities between all pairs of names

in two datasets. Two entries are declared a match if the dissimilarity is below an acceptable

threshold. The procedure used in the LinkIt software developed here has two steps, the first of

which is the same as simple fuzzy matching. In the second step, we perform fuzzy matching of

each dataset to the directory constructed from LinkedIn data. The directory provides a canon-

ical numeric identifier for each successful match in stage two. This shared numeric identifier

provides the basis for a second round of matching where hard-to-identify matches have a better

chance to be found.

For any particular acceptance threshold, the LinkIt procedure finds at least as many matches

as the simple procedure. It is not always the case, however, that the additional matches

from the LinkIt step represent a performance gain. Some of these matches might be true

positives (improving performance), while others might be false positives (hurting performance).

Moreover, each procedure may be applied using a different acceptance threshold. As we show,

a significant advantage of the supplemented procedure is that it can achieve a similar number

of positive matches as fuzzy matching with a lower acceptance threshold. Lower acceptance

thresholds result in fewer false matches, so are generally preferred.

In what follows, we focus on string matching using the cosine distance measure (the Jaccard
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distance measure produces similar results). For two strings 𝑎 and 𝑏, the cosine measure is

constructed as follows. Let 𝐴 and 𝐵 reflect the decomposition of 𝑎 and 𝑏 respectively into

a binary vector whose entries are 1 if a given 𝑞 character combination (known as 𝑞-gram) is

present and 0 otherwise. Then

𝑑 (𝑎, 𝑏) = 1 −
∑𝐷

𝑑=1 𝐴𝑖𝐵𝑖√∑𝐷
𝑑=1 𝐴

2
𝑖

√∑𝐷
𝑑=1 𝐵

2
𝑖

,

where 𝐷 is the total number of 𝑞-grams present in 𝐴 or 𝐵. If all 𝑞-grams co-occur within 𝐴

and 𝐵, the measure is 0. If none co-occur, the measure is 1. Following (Navarro and Salmela

2009), we set 𝑞 = 2. The results are not sensitive to this choice.

We examine two measures of performance—(a.) the number of true matches found and (b.)

a measure which considers the presence of true positives, false positives, and false positives

which is known as the 𝐹𝛽 score. This score is defined formally as

𝐹𝛽 =
(1 + 𝛽2) · true positive

(1 + 𝛽2) · true positive + 𝛽2 · false negative + false positive
(3)

In the best case scenario, the 𝐹𝛽 score is 1, which occurs when all true matches are found,

with no false negatives or false positives. In the worst case scenario, the score of 0, which occurs

when no true positives are found. If an algorithm obtains some positives matches but many

more false negatives or false positives, the measure also approaches 0. The parameter 𝛽 controls

the relative costs of false negatives as compared with false positives. If 𝛽>1, false negatives

are regarded as less costly than false positives; if 𝛽<1 then the reverse. In the matching

context, errors of inclusion are typically less costly than errors of exclusion because the list of

succesful matches is usually shorter and easier to double-check than the list of non-matched

pairs. Therefore, the particular version of 𝐹𝛽 we focus on is 𝐹2.

Figure 2 shows that the directory-based approach yields higher 𝐹2 score across the accep-

tance threshold range, and also returns more true positives. The percentage gain in performance

is highest when the fuzzy acceptance threshold is near 0, which is often preferable in practice

as higher acceptance threshold can yield low quality matches. This result illustrates how our
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FIGURE 2. We find that dataset linkage using the Markov clusters on the LinkedIn alias
network obtains superior performance both when adjusting for the rate of false positives
(left panel) and also when counting only the raw percentage of correct matches obtained
(right panel).
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directory-based method yields superior performance compared to a leading alternative method

for obtaining organizational matches in the common use case when researchers do not have

access to shared covariates across datasets.

It is also instructive to consider an example from this linkage task where fuzzy matching

failed but the LinkIt approach has success. In particular, fuzzy matching fails to link the organi-

zational log entry associated with “HSBC Holdings PLC” to the stock market data associated

with “HSBC.” Their string distance using the cosine measure is 0.57, which is much higher

than the distance of “HSBC Holdings PLC” to its fuzzy match (0.13 for “AMC Entertainment

Holdings, Inc.”). “HSBC Holdings PLC”, however, has an exact match in the LinkedIn-based

directory, so that the two organizations are successfully paired even with a fuzzy-matching

threshold of 0 according to the LinkIt procedure.

DISCUSSION

Organizational data often lacks common covariate data (such as race or gender), making it

difficult to apply probabilistic linkage methods and motivating the widespread use of fuzzy
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FIGURE 3. ROC description.
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matching algorithms. We have presented a new tool for improving the matching of organiza-

tional entities using over a half-billion open collaborated employment records from a prominent

online social network. This approach can match organizations which contain no common lin-

guistic identifiers or which are written in different languages. We validate the approach on an

example task linking organizational meeting logs to stock market tickers. We show superior

performance to the most common alternative method (fuzzy matching). As a novel application

of community detection to this area, we have erred on the side of simplicity and transparency

in extracting an organizational directory from these open collaborated records. Future work

may attempt more sophisticated approaches to graph construction, community detection, and

matching calibration using this unique data source.
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